

GENOME SURGERY THE NEXT WAVE OF GENE EDITING THERAPIES

FORWARD-LOOKING STATEMENTS

This presentation contains "forward-looking" statements within the meaning of applicable securities laws, including the Private Securities Litigation Reform Act of 1995. Forward-looking statements may be identified by words such as "at this time," "anticipate," "believe," "expect," "on track," "plan," "scheduled," and "will," or the negative of these and similar expressions.

These forward-looking statements, which are based on our management's current expectations and assumptions and on information currently available to management, include statements about our research and development projects and priorities, our pre-clinical project development efforts, the timing and progress of clinical trials (including with respect to patient enrollment and follow-up), the timing of our presentation of data, the adequacy of our supply of clinical vials, the timing of completion of construction of our Raleigh, North Carolina manufacturing facility, and operational capabilities at our manufacturing facilities, and the sufficiency of cash to fund operations.

These forward-looking statements are made in light of information currently available to us and are subject to numerous risks and uncertainties, including with respect to the numerous risks associated with biopharmaceutical product candidate development as well as the duration and severity of the COVID-19 pandemic and governmental and regulatory measures implemented in response to the evolving situation.

With respect to our cash runway, our operating plans, including product development plans, may change as a result of various factors, including factors currently unknown to us. Furthermore, many other important factors, including those described in our Annual Report on Form 20-F and the financial report (including the management report) for the year ended December 31, 2020 and subsequent filings Cellectis makes with the Securities Exchange Commission from time to time, as well as other known and unknown risks and uncertainties may adversely affect such forward-looking statements and cause our actual results, performance or achievements to be materially different from those expressed or implied by the forward-looking statements.

Except as required by law, we assume no obligation to update these forward-looking statements publicly, or to update the reasons why actual results could differ materially from those anticipated in the forward-looking statements, even if new information becomes available in the future.

ALLOGENEIC HSC TRANSPLANT IS A CURATIVE TREATMENT

Allows to treat many human diseases

- **Hematological Disease** (SCD, β-Thalassemia, Anemias)
- Autoimmune Disease (Multiple Sclerosis)
- Viral Disease (HIV, HTLV)
- Malignant Disease (Multiple Myeoloma, HL & NHL)

Frequency of matched donor available in US (2013-2017)

2.27X

Mortality risk of HLA-mismatched vs matched donor in age 55 or over

HEAL

Gene editing offers an unique opportunity to address the challenges

Data from Human Resources and Services Administration Furst et al, Hematologica, 2017

HSC GENE THERAPY IS VERSATILE

HSC GENE THERAPY POTENTIAL

HSC GENOME SURGERY PLATFORM

KEY ASPECTS OF HSC ENGINEERING FOR GENOME SURGERY

PROCESS HIGH MODIFICATION EFFICIENCY

HIGH CELL VIABILITY & DIFFERENTIATION POTENCY

INCREASE IN PRIMITIVE HSC

CLINICAL-SCALE MANUFACTURING

GENE EDITED HSC CAN DIFFERENTIATE INTO MULTIPLE LINEAGES

PROCESS CELLECTIS HAS DEVELOPED HIGH LEVEL OF GENOME SURGERY

- 75-96% modification efficiency in multiple loci
- >80% cell viability & preserve differentiation potential
- >4-fold increase in primitive HSC
- Clinical-scale manufacturing without affecting key parameters

.HEAL

.HEAL GENE SURGERY TO CURE SICKLE CELL DISEASE .TALGLOBIN01

SICKLE CELL ANEMIA

SICKLE CELL ANEMIA

SICKLE CELL ANEMIA TREATMENT OPTIONS

AUTOLOGOUS GENE SURGERY TO BYPASS HSCT AND CURE SCA

A PRECISE GENETIC SURGERY OF HBB SICKLE MUTATION TO CURE SCD

HIGHLY EFFICIENT HBB SURGERY AND MINIMAL COLLATERAL EFFECTS

Potential advantage compared to competitors

HBB SURGERY PROCESS SHOWS MINIMAL OFF-SITE ACTIVITY

One single off-site identified

Low off-site activity

HBB SURGERY EFFICIENTLY RESCUES HEMOGLOBIN IN RBC

HBB CORRECTED HSC EFFICIENTLY ENGRAFT IN VIVO

.HEAL GENE SURGERY TO CURE SICKLE CELL DISEASE - TALGlobin01

SCA HBB surgery repairs hemoglobin and brings it back to its physiological level.

- Highly efficient correction of sickle HBB gene
- Hemoglobin rescued to therapeutic level
- Selection free process
- Low β⁰ collateral effect mitigates potential toxicity

TALGIobin01 is ready to move forward to clinical development

DISCOVERY

.HEAL GENE SURGERY TO CURE LYSOSOMAL STORAGE DISEASES

LYSOSOMAL STORAGE DISEASES

What are LSD?

Degradation and recycling

26

LYSOSOMAL STORAGE DISEASES

What are LSD?

Clinical evolution

Accumulation of cellular waste leads to multi-organ defects and systemic symptoms

Over 70 diseases caused by genetic defects leading to **lysosomal dysfunction**

Degradation and recycling disrupted in LSD

Highly debilitating and lifethreatening (life expectancy in severe

(life expectancy in severe cases is often < 12 months)

Combined frequency: 1 in 5000 newborns

URGENT NEED FOR EFFICIENT LSD TREATMENT AND CURE

Current therapeutics for LSD

Allogenic stem cell transplantation

Enzyme Replacement Therapy

- 1. In most cases, treatment is only supportive.
- 2. Neurological symptoms remain untreated.
- 3. HSC genome surgery is a therapeutic strategy addressing unique LSD challenges.

HSC GENE THERAPY CAN SUITABLY TARGET LSD

Potent supra-endogenous LSD enzyme secretion

HSC GENE THERAPY CAN SUITABLY TARGET LSD

Potent supra-endogenous LSD enzyme secretion

Systemic distribution

30

HSC GENE THERAPY CAN SUITABLY TARGET LSD

Potent supra-endogenous LSD enzyme secretion

Systemic distribution

Myeloid cells can reach brain tissue

by celedit

	ArtEx	Other gene therapy (lentiviral, safe harbor)
One-time treatment	Yes	Yes
Over-expression	Yes, depending on the targeted gene	Yes, depending on the promoter
Neurological benefit	Yes	Yes

Traditional LSD therapeutic options		
Allogenic transplantation	Enzyme Replacement Therapy	
Yes + ERT if needed	No	
No	N/A	
Very limited	No	

HSC GENE THERAPY BY ARTEX: SAFE AND SPECIFIC

by celectis

	ArtEx	Other gene therapy (lentiviral, safe harbor)
One-time treatment	Yes	Yes
Over-expression	Yes, depending on the targeted gene	Yes, depending on the promoter
Neurological benefit	Yes	Yes
Lack of collateral disruption risk	Yes	No
Lack of exogenous promoter	Yes	No
Cell type dependent expression	Yes	Challenging
Lack of overexpression in primitive HSC	Yes	No

POTENT AND SAFE TALEN®

Efficient TALEN®

TALEN efficiency

POTENT AND SAFE TALEN®

Efficient TALEN®

TALEN efficiency

(%) 80-60-40-20-0 Myeloid gene

With exquisite target specificity

chr1 chr	
chr2 chr2	
chr3	
chr4 chr4	
chr5 chr5	
chr6 chr6 chr6	
chr7 chr	
chr8 (
chr9 chr9	
chr10	
chr11	
chr12	
chr13	
chr14	100+ notential sites screened
chr15	
chr16	hy deep sequencing
chr17	by deep sequencing
chr18	
chr19	
chr20	
chr21	
chr22	
chrX	
chrY	150Mb 175Mb 200Mb 225Mb

39

ARTEX: SAFE AND LINEAGE SPECIFIC

ARTEX: SAFE AND LINEAGE SPECIFIC

41

ARTEX EDITED HSC ENGRAFT AND ITS PROGENY SECRETE THERAPEUTIC PROTEIN

Therapeutic protein

ARTEX EDITED HSC ENGRAFT AND ITS PROGENY SECRETE THERAPEUTIC PROTEIN

ARTEX EDITED HSC ENGRAFT AND ITS PROGENY SECRETE THERAPEUTIC PROTEIN

HSC GENE THERAPY POTENTIAL FOR LSD

One shared TALEN [®]...

Enzyme	Disease	Estimated patients in US per year*
α-galactosidase	Fabry disease	380-1900
β Glucocerebrosidase	Gaucher disease	38-342
Lysosomal α- glucosidase	Pompe disease	38-342
Arylsulfatase A	Metachromatic leukodystrophy	4-34
α- L-Iduronidase	MPS-I	4-34
Iduronate 2-sulfatase	MPS-II	4-34

...for Multiple Diseases

.HEAL DISCOVERY **HSC GENOME SURGERY FOR LSD DISEASES** Potential single treatment cure **HSC** genome surgery for Proven systemic distribution, including neurological LSD Myeloid lineage specific expression Easily adaptable platform: plug and play Single TALEN® to treat multiple Cost-effective development LSD Faster clinical track

.HEAL PIPELINE HSC GENOME SURGERY FOR MULTIPLE GENETIC DISEASES

.HEAL PIPELINE HSC GENOME SURGERY FOR MULTIPLE GENETIC DISEASES

.HEAL

Indications	Cell type	Candidate	Target	Discovery	Preclinical	IND-enabling
Sickle Cell Anemia	CD34+	TalGlobin-01	НВВ			
Primary Immunodeficiency	CD34+	TalX-02	Undisclosed			
Lysosomal Storage Disease	CD34+	TalX-03	Undisclosed			
Primary Immunodeficiency	T-cell	TalX-04	undisclosed		•	
Primary Immunodeficiency	T-cell	TalX-05	undisclosed			

GENOME EDITING TO TREAT IMMUNODEFICIENCIES

TONI CATHOMEN

INSTITUTE FOR TRANSFUSION MEDICINE & GENE THERAPY MEDICAL CENTER – UNIVERSITY OF FREIBURG GERMANY

R&D INTERESTS DEVELOPMENT OF INNOVATIVE CELL AND GENE THERAPIES

CLINICAL SUCCESS OF GENE THERAPY CONVENTIONAL GENE TRANSFER

CLINICAL SUCCESS OF GENE THERAPY CONVENTIONAL GENE TRANSFER VS. GENOME EDITING

- © Efficient gene transfer
- \odot No SAE (SIN- γ RV / LentiV / AAV)
- ⊖ Gain-off-function mutations (*e.g.* STAT3)
- \otimes Levels of gene expression (e.g. STAT3)
- © Spatio-temporal regulation of expression (e.g. RAG1)

- © Correct disease causing mutations
- ② Disrupt disease-associated genes
- Biological consequences of off-target effects not well understood

INTERVENTIONAL GENOME EDITING STUDIES → OPPORTUNITIES

OUR BLOOD & IMMUNE SYSTEM

by ceresting the section of the sect

OUR BLOOD & IMMUNE SYSTEM EDITING THE IMMUNE SYSTEM

OUR BLOOD & IMMUNE SYSTEM EDITING THE IMMUNE SYSTEM

.HEAL by œedis

OUR BLOOD & IMMUNE SYSTEM EDITING THE IMMUNE SYSTEM – TREATMENT OF RAG1-SCID

HEAL by **celedis**

OUR BLOOD & IMMUNE SYSTEM EDITING THE IMMUNE SYSTEM – TREATMENT OF RAG1-SCID

OUR BLOOD & IMMUNE SYSTEM EDITING THE IMMUNE SYSTEM – TREATMENT OF RAG1-SCID

\rightarrow restore immune system

RAG1 MUTATIONS IN RAG-SCID PATIENTS POSITION OF THE MUTATIONS

RAG1 MUTATIONS IN RAG-SCID PATIENTS PROOF-OF-CONCEPT: EX VIVO IN CD34+ STEM CELLS

HEAL by Cellectis | "TREAT ID"

64

STAT3 MUTATIONS IN HIES PATIENTS POSITION OF THE MUTATIONS

STAT3 MUTATIONS IN HIES PATIENTS PROOF-OF-CONCEPT: EX VIVO IN NORMAL T-CELLS

STAT3 MUTATIONS IN HIES PATIENTS PROOF-OF-CONCEPT: EX VIVO IN NORMAL T-CELLS

- Highly effective TALENs \checkmark
- Targeted integration frequency (40-70%) \checkmark
- Correct ratio of STAT3 α : STAT3 β V for i7 and i9

68

STAT3 MUTATIONS IN HIES PATIENTS PROOF-OF-CONCEPT: EX VIVO IN PATENT-DERIVED T-CELLS

 \checkmark

- Targeted integration frequency (40-60%)
- ✓ Correct ratio of STAT3 α : STAT3 β
 - \rightarrow ready for clinical development

HEAL by Cellectis | "TREAT ID"

OUR BLOOD & IMMUNE SYSTEM EDITING THE IMMUNE SYSTEM – TREATMENT FOR HIV

ENGINEERING RESISTANCE TO HIV INFECTION PROOF-OF-CONCEPT: EX VIVO AND IN VIVO

SUMMARY EDITING THE IMMUNE SYSTEM

Proof-of-Concept Studies demonstrate feasibility

to edit the immune system for the treatment of

- primary immunodeficiencies (RAG1 in HSC, STAT3 in T-cells)
- HIV infection (*CCR5* KO to induce resistance)

Foundation

- highly active and highly specific TALENs (~90% editing)
- smart donor design (regulated transgene expression)
- optimized culturing systems (TI in 20-30% in HSC, 40-70% in T-cells)

Opportunity to treat unmet clinical need